Research Status of Three-Dimensional Pseudo-Continuous Arterial Spin Labeling in Ischemic Cerebrovascular Diseases
Lina Zhu,
Jiang Wu,
Hui Zhang
Issue:
Volume 4, Issue 1, March 2018
Pages:
1-5
Received:
19 June 2018
Accepted:
1 August 2018
Published:
1 September 2018
Abstract: Ischemic cerebrovascular disease (ICVD) is a kind of brain dysfunction caused by intracranial vascular disease, which has a serious threat to the patient's quality of life. With the development of ICVD in the direction of high incidence and young age, the early diagnosis of ICVD has become an urgent need in clinical practice. Three-dimensional pseudo-continuous arterial spin labeling (3D-pCASL) as a completely non-invasive perfusion imaging method can reflect changes of cerebral blood flow, and has been used in the study of ICVD. The aim of this paper is to review the research progress of 3D-pCASL in ICVD. By reviewing to the relevant domestic and foreign literatures on the value of ASL in ICVD in the past ten years, we found that 3D-pCASL technique has some advantages in the early evaluation of the abnormal perfusion of cerebral blood flow, the differential diagnosis, the reperfusion after cerebral infarction, the ischemic penumbra and the evaluation of prognosis, which has important guiding significance for the prevention of ICVD and the determination of the next treatment. Moreover, with the development of ASL technology and the appearance of new perfusion imaging method of ASL technology, it shows that it plays an inestimable role in the study of ischemic cerebrovascular diseases. In conclusion the role of 3D-pCASL in the cerebral perfusion of ICVD has been confirmed and has a very broad application prospect.
Abstract: Ischemic cerebrovascular disease (ICVD) is a kind of brain dysfunction caused by intracranial vascular disease, which has a serious threat to the patient's quality of life. With the development of ICVD in the direction of high incidence and young age, the early diagnosis of ICVD has become an urgent need in clinical practice. Three-dimensional pseu...
Show More